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ABSTRACT 
This paper will discuss the application of high performance 
component software technology developed for a complex physics 
simulation development effort. The primary tool used to build 
software components is called Babel and is used to create 
language-independent libraries for high performance computers. 
Components were constructed from legacy code and wrapped 
with a thin Python layer to enable run-time scripting. Low-level 
components in Fortran, C++, and Python were composed directly 
as Babel components and invoked interactively from a parallel 
Python script. 

Categories and Subject Descriptors 
D.2.12 [Software Engineering]: Interoperability - distributed 
objects, interface definition languages. 

General Terms 
Algorithms, Performance, Languages 

Keywords 
Components, scientific computing, numerical methods, physics. 

1. INTRODUCTION 
The scientific computing community has invested a significant 
amount of resources towards the development of high- 
performance scientific simulation software, including numerical 
libraries, visualization, steering, software frameworks, and physics 
packages. Unfortunately, because this software was not designed 
for interoperability and re-use, it is often difficult to share these 
sophisticated software packages among applications due to 
differences in implementation language, programming style, or 
calling interfaces. It is highly desirable to be able to reuse large 
and complicated software packages without having to devote large 
amounts of time to re-engineer them [I].  Moreover, many of the 
simulations that are required today involve multiple physical and 
chemical processes, so-called multiphysics simulations. Building 
these codes from pre-tested software components is much more 
reliable and efficient than trying to build a complete simulator 
from scratch [2]. 

One example of a complicated multiphysics simulation problem is 
the interaction of lasers with plasmas. Simulation of laser plasma 
interaction is an important design tool, complementing theoretical 
analysis and experimentation for developing complicated laser 

tools for studying inertial confinement fusion. The software 
required for simulating these complex physical processes reflects 
the physical system: it is complex. To carry out numerical 
experiments and analyze the resulting computational data, the 
software must be flexible enough to allow scientists to quickly 
and easily compare competing physics models and alternative 
design strategies. Constructing complex simulation codes from 
available software components is an efficient strategy for building 
a new laser plasma simulation code. 

In this paper, will present our experiences wrapping a large 
scientific simulation code using the Babel language 
interoperability tool [8] so that the application could be driven 
from the Python scripting language. Furthermore, we were able to 
freely mix C++, Fortran, and Python modules in the software. For 
example, from the scripting layer, we were able to call the 
application code in C++, which in turn called a numerical routine 
written in Fortran, which in turn called a bounary condition 
routine written in Python. This language interoperability enabled 
us to rapidly prototype new boundary conditions modules in 
Python without recompiling or linking the whole code. We 
discovered that compiler incompatibilities introduced some 
difficulties in code reuse. This problem is ubiquitous and is not 
limited to the Babel tool. We will discuss the trade-offs using a 
tool such as Babel as compared to a more traditional wriapping 
solution such as SWIG. 

2. ALPS: Adaptive Laser Plasma Simulator 
The ability to predict and control laser-plasma interactions is 
critical for the design of inertial confinement fusion (ICF) 
experiments. ICF involves the use of high powered lasers to 
rapidly ionize and compress hydrogen fuel pellets sufficiently to 
initiate a fusion reaction. During these experiments, a plasma 
filled region is created by the ionizing fuel. The laser must 
continue to propagate through the plasma region to achieve the 
desired distribution of energy at the target fuel pellet. Simulation 
of the laser plasma interactions is used to predict and control laser 
parameters for ICF experiments. 
The Adaptive Laser Plasma Simulator (ALPS) project [3] is being 
developed using the SAMRAI (Structured Adaptive Mesh 
Refinement Applications Infrastructure) [4,5] system currently 
under development in CASC. SAMRAI is a C+!- class library that 
supports the development of application codes utilizing structured 
adaptive mesh refinement (AMR) algorithms. Parallelism on 
distributed memory architectures is handled by the framework, 



freeing the user from most of these details. Data layout and 
interprocess communication is performed through an interface to 
the standard Message Passing Interface (MPI) library. 

3. Component Software Technology 
Component technology is an extension of scripting and object- 
oriented software development techniques that specifically 
focuses on the needs of software re-use and interoperability. 
Component-based software techniques address issues of language 
independence and component connection behavior that other 
software techniques do not address. To use a hardware analogy, a 
component is like a "software integrated circuit" with well-defined 
pin-outs that may be connected to compatible pins on other 
"software integrated circuits." Figure 1 is a cartoon illustration of 
how we used Babel as the backplane to connect software 
components together to create an application. 

3.1 Commercial solutions 
Component approaches based on CORBA [9], COM [12], and 
Java technologies are widely used in industry but will not scale to 
support large parallel applications in science and engineering. 
Our research focuses on the unique requirements of scientific 
computing on high-performance machines, such as fast in-process 
connections among components, language interoperability for 
scientific languages, and data distribution support for massively 
parallel SPMD components. 

3.2 Babel 
Babel is a language interoperability tool that uses a Scientific 
Interface Definition Language (SIDL) to describe component 
interfaces. Using SIDL descriptions, Babel automatically 
generates code to mediate differences between components 
written in different languages. 

Computational scientists developing large simulation codes often 
face difficulties due to language incompatibilities among various 
software libraries. Scientific software libraries are written in a 
variety of programming languages, including Foman, C, C++, or 
a scripting language such as Python. Language differences often 
force software developers to generate mediating glue code by 
hand. In the worst case, computational scientists may need to re- 
write a particular library from scratch or not use it at all. We have 
developed a tool called Babel that addresses language 
interoperability and re-use for high-performance parallel scientific 
software. Its purpose is to enable the creation, description, and 
distribution of language independent software libraries. 
Babel addresses the language interoperability problem using 
Interface Definition Language (IDL) techniques. An IDL 
describes the calling interface (but not the implementation) of a 
particular software library. IDL tools such as Babel use this 
interface description to generate glue code that allows a software 
library implemented in one supported language to be called from 
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any other supported language. We have designed a Scientific 
Interface Definition Language (SIDL) that addresses the unique 
needs of parallel scientific computing. SIDL supports complex 
numbers and dynamic multi-dimensional arrays as well as parallel 
communication directives that are required for parallel distributed 
components. SIDL also provides other common features that are 
generally useful for software engineering, such as enumerated 
types, symbol versioning, name space management, and an object- 
oriented inheritance model similar to Java. 
The Babel parser, which is available either at the command-line or 
through the Alexandria web interface, reads SIDL interface 
specifications and generates an intermediate XML representation. 
XML is a useful intermediate language since it is amenable to 
manipulation by tools such as a repository or a problem solving 
environment. XML interface descriptions are stored either in a 
local file repository or on the web using Alexandria. The vision is 
that a scientist downloading a particular software library from the 
component repository will receive not only that library but also 
the required language bindings generated automatically by the 
Babel tools. 
The Babel code generator reads SIDL XML descriptions and 
automatically generates glue code for the specified software 
library. This glue code mediates differences among calling 
languages and supports efficient inter-language calls within the 
same memory address space and, eventually, across memory 
spaces for distributed objects. The code generators create four 
different types of files: stubs, skeletons, Babel internal 
representation, and implementation prototypes. The Babel internal 
object representation created by the code generators is similar to 
that used by COM, CORBA's Portable Object Adaptor, and 
scientific libraries such as PETSc. The internal object 
representation is essentially a table of function pointers, one for 
each method in an object's interface, along with other information 
such as internal object state data, parent classes and interfaces, 
and Babel data structures. Stub and skeleton code translates 
between the calling conventions of a particular language and the 
internal Babel representation. The code generators also create 
implementation files that contain function prototypes to be filled 
in by the library developers. To simplify the task of library 
writers, we have added automatic Makefile generation as well as a 
code splicing capability that preserves old edits during the 
regeneration of implementation files after modifications to the 
SIDL source. Finally, the run-time library provides general 
services such as reference counting and dynamic type 
identification. In the future, we expect to support dynamic loading 
of objects, reflection, and a dynamic invocation interface. 

4. PyALPS 
Currently, our laser plasma simulations are carried out using a 
uniform rectangular grid. This prohibits the use of high resolution 
in the regions of greatest interest by requiring a uniform grid over 
the entire domain. However, the code currently used for laser- 
plasma simulation is highly developed as a scientific and 
engineering design tool. In particular, an in-house scripting 
language called Yorick [l 13 is used for interactive steering and 
control of laser calculations. Yorick is an interpreted 
programming language, designed for postprocessing or steering 
large scientific simulation codes. Smaller scientific simulations or 
calculations can be written as standalone yorick programs. The 
language features a compact syntax for many common array 



operations, so it processes large arrays of numbers very 
efficiently. 

4.1 Scripting 
For use as a scientific and engineering design tool, ALPS requires 
the run-time flexibility of a scripting language, such as the Yorick 
capability that current laser physicists are accustomed to having. 
We adopted Python as a scripting language because it has a large 
and growing scientific user base and has a parallel 
implementation. 

Since detailed simulations of laser plasma interactions can 
consume many hours of supercomputer time, it is often desirable 
to do calculations with either limited spatial resolution or a small 
number of time steps, then look at the results and determine 
whether some adjustment of the parameters is needed before 
continuing on with a lengthy calculation. Similarly, short period 
simulations may be used to examine the effects of parameter 
variations. Scripting enables laser scientists to perform 
simulations in a controlled fashion to maximize the amount of 
information that can be obtained in a limited time [8]. It also 
allows a great deal of flexibility by allowing different or new 
physics modules to be invoked quickly and easily. Scripted codes 
can be run interactively or in batch mode, giving the user 
considerable flexibility over a simulation. 

We have used Babel to develop a scripted version of ALPS that 
uses Python as the scripting language. Wrapping parts of the 
ALPS code using Babel enables the creation of plug-n-play 
modules in a variety of supported languages. From the highest 
level at which users interact with pyAlps, the ALPS application 
appears to be a Python package, consisting of pure Python 
modules. that enables application users to compare ALPS results 
against those produced by an existing computational tool. The 
scripted interface will also allow ALPS users to interact with a 
running simulation to visualize data on-the-fly. This collaboration 
is the first to demonstrate Babel's applicability in a large-scale 
scientific application. 

One of the primary goals of creating a scripted version of ALPS 
was to enable users to run ALPS interactively. Babel was used to 
create thin Python wrappers for important capabilities in the 
ALPS code. Specifically, we wrote interface files with Babel's 
Scientific Interface Definition Language (SIDL), which is similar 
to the IDL interface used to write CORBA interfaces. The SIDL 
file is a language-independent, object oriented description of the 
attributes (member variables) and methods associated with 
interfaces and classes. Babel uses the information in the SIDL file 
to create language bindings for any of the supported languages. 
An example of a SIDL file is shown here. It contains class 
definitions for the basic Alps class and for beam modules, which 
compute the energy intensity contained in a laser beam. The SIDL 
file is used by the babel software to generate client-side and 
server-side code, each in a specified language. For the Alps class, 
the client is written in Python and all relevant files are presented 
to the user as the pyAlps package. Once imported as a Python 
package, an Alps class is created and methods can be invoked. 
After initialization from an input file or restart data file, the user 
may invoke several different run options in order to control time 
stepping precisely. Visualization files can be written at any point 
after the simulation has run to the currently-specified time and 
viewed using visualization software. Parameters can be adjusted 

using Python-wrapped database manipulation methods for the 
input variables. 
The following code is an example of a SIDL file for the pyALPS 
package. Babel uses the information in this file to create glue code 
in any of the supported languages to wrap each of the specified 
objects. 

version pyAlps 0.1; 
package pyAlps { 

class Alps { 
void initialize(in pySAMRAI.InputDatabase database); 
void initializeFromRestart(in string dir, in int num, in 

double run(in double time); 
double runToFinish0; 
double runTo(in double time); 
double step(in int nun-iter); 
double stepTo(in int iteration); 
void writeRestart(in string fname, in int seq-nun-ext); 
void writeVis(in string fname, in int seq-nun); 
void finalize0; 

pySAhfRA1.InputDatabase database); 

1 
abstract class Beam { 

abstract void setBeamO(inout array<dcomplex,2> amp); 
final void setDopplerShift(in double a-doppler-shift); 
final double getDopplerShift0; 
final void setCenter(in array<double,l> a-center); 
final void getCenter(out array<double,l ? a-center); 
final void setMaxIntensity(in double a-intensity); 
final void getMaxIntensity(0ut double a-intensity); 

1 
class C o s 2 B e a m  extends Beam { 

class SphericalCos2-Beam extends Beam { 

class Gaussian-Beam extends Beam { 

class SuperGaussianBeam extends Beam { 

void setBeamO(inout array<dcomplex,2> amp); } 

void setBeamO(inout array<dcomplex,2> amp); } 

void setBeamO(inout array<dcomplex,2> amp); } 

void setBeamO(inout array<dcomplex,2> amp); } 
1 

In particular, note that the beam class is declared to be an abstract 
class. This means that at least of the member functions of the 
beam class is abstract and is not defined within the beam class. 
Subclasses of the general beam class must define a setBeamO 
method. The abstract beam class also declares a number of 
member functions that will be explicitly defined in the 
implementation of the beam class. These member functions are 
common to all subclasses of the beam module, although they may 
be substituted with new functions in subclasses. Babel can create 
Beam modules in any of the supported languages, currently 
including F77, Python, C, and C + +  from the SIDL file. 
Our initial task was to decompose the ALPS code into 
components that were appropriate for run-time scripting. The 
primary tasks performed in the monolithic code were to read and 
process input data, initialize data structures, loop through a 
specified time loop, and output data at regular intervals in the time 
loop. These code segments formed the basic components that 
were to be controlled from the script. 



The ALPS code simulates the interaction of a set of laser beams 
with a plasma in space and time. The computational grid is a 
sophisticated adaptive, multilevel grid that is required for high 
resolution. Often, run-time parameters for the complex simulation 
runs are not know precisely. Scientists needed a simulation tool 
that could be run a certain number of time steps, stopped and 
queried using visualization tools to inspect intermediate field 
variables, then modified by changing certain key parameters and 
run forward in time for a fixed interval again. This gave the 
scientists a steering capability through Python scripting. 
A parallel version of Python, pyMPI, developed at LLNL and 
available publically through SourceForge [ 121 was adopted for 
Python scripting. ALPS is built using the SAMRAI framework for 
adaptive mesh simulations on parallel machines, together with 
legacy Fortran code obtained from laser physicists. Linear solvers 
from the PETSc library and HYPRE are available through the 
SAMRAI framework and invoked for solving linear systems. 
Babel was able to generate code to glue together all these 
packages in appropriate components. Of particular note was the 
decomposition of SAMRAI into components for data I/O and 
mesh initialization. From the scientist's view, pyALPS looks like 
a normal python script. An example of a pyALPS script is shown 
here: 
import sys 
import pySAMRAI.InputDatabase 
import pySAhlRAI.Alps 

# Create the input database 
inputdb = pySAMRAI.InputDatabase.InputDatabase0 
inputdb.initialize(" ALPS") 
inputdb.parseInputFile("a1ps.input") 

# Create alps object and initialize the state 
alps = pySAMRAI.Alps.Alps0 
alps.initialize(inputdb) 

# Change some values 
griddingdb = inputdb.getDatabase("GriddingA1gonthm") 
print("0ld efficiency-tolerance = Yof' Yo 
griddingdb.getDouble("efficiency-tolerance")) 
print("0ld combine-efficiency = %f' O/o 

gnddingdb.getDouble("combine-efficienc y")) 
gnddingdb.putDouble("efficiency-tolerance", 0.90) 
griddingdb.putDouble("combine-efficiency ", 0.90) 
print("New efficiency-tolerance = %f' Yo 
gnddingdb.getDouble("efficiency-tolerance")) 
print("New combine-efficiency = '/of' Yo 
gnddingdb.getDouble("combine-efficiency")) 

# Step 5 time steps . . . 
alps.Step(5) 
# . . . then do something with the data! 
# Run to the end specified in the input file 
alps.runToFinish0 
# Finalize everythtng 
alps.fmalize0 

One of the primary difficulties encountered in this project was 
related to the need to create dynamic libraries for run-time 
loading. Incompatible compiler options seemed to cause the most 
build problems. During the integration process the low level 
details of simply building the code caused an unexpected number 
problems. Several of the packages we were integrating had not 
been compiled as a shared library before. This mandated a 
reworking of the build systems in order to support the necessary 
compilation steps. While this was expected, the brittleness of the 
build process was not. We found that even slight variations in the 
compiler options used to compile each package could cause link 
or runtime failures. 
The runtime failures in particular are troublesome since a method 
invocation would fail in a system library for no obvious reason. 
To overcome this we standardized on a set of compilers and 
compile flags for all packages. While this is a simple (and 
obvious) solution, it is not a satisfactory solution if the goal is to 
have a large set of easy to use components for widespread use. 
Given the target audience for a scientific component architecture 
contains developers for whom dynamic linking will be a new 
experience, these types of problems could pose a barrier for 
software reuse, especially for software in object or component 
form. The component software community may need to move 
towards some kind of compiler meta-data for packages or 
something else to facilitate mixing of binary libraries, especially 
with C++. 
Creating SIDL files needed to w a p  each of the components is is a 
little tedious, but is relatively straight-forward. We did not find 
this to be a particularly difficult issue. 

4.2 Plug and Play Modularity 
In addition interactive control of simulations, the capability of 
easily swapping in alternative physics modules is a desirable new 
feature for laser plasma simulations. Scientific investigation using 
simulation often involves testing and comparing alternative 
physics modules or new algorithms. Our goal was to enable rapid 
replacement of classes, subroutines, or groups of related classes 
and subroutines with alternatives. 
To do this, appropriate pieces of code were wrapped using Babel 
and made into Babel components. These components can be 
accessed by driver routines written in any of the Babel supported 
languages. Alternative components can then be written by 
application scientists in any language that's convenient and 
wrapped with Babel to make an alternative component that can be 
seamlessly interchanged with the original component. Because the 
application scientist is free to implement new components in a 
language such as Python, new algorithms can be written quickly 
and tested in the pyALPS code. Important components can be 
optimized in another programming language later if desired. 
One of the novel and powerful capabilities provided by Babel 
components is the ability to call any of the supported languages 
from any other. Thus, not only can Python call C or Fortran 
subroutines as, for example, SWIG extensions to Python, but 
Fortran can also call Python functions. We used this feature to 
create a powerful plug and play capability for scientific 
exploration of new beam modules. 

4.2.1 Beam Modules 
In the ALPS code, beam calculations are invoked from within the 
legacy Alps code. The original beam subroutines are written in 



Fortran and are called from Fortran subroutines, which are 
originally invoked from the Alps C t t  driver code. Using the 
SIDL file shown above for the Beam class, we made Beams a 
component of the system and modified the ALPS driver to call 
Beam components rather than the original embedded Fortran 
subroutines. Beam modules clients were created in Fortran using 
Babel to enable us to use the original Fortran beam calculations. 
Once this was done, we also created Python beam clients to 
demonstrate this capability. The advantage of Python beam 
modules is that they can be created quickly and do not need to be 
compiled to be invoked by the pyAlps simulator. This provides a 
versatile tool for scientific experimentation. 

77 
/ >  

Figure 1. Physics components can be written in any of the 
languages supported by Babel. Components written in Python, 
for example, can be invoked without recompiling to rapidly 
test new algorithms. 

4.2.2 Lessons Learned 
Creating new modules was not as difficult as building the 
components created from legacy code and linking them together. 
This is due largely to the fact that new beam modules are designed 
and written specifically for the component system. Python 
modules are particularly easy to write and invoke from the Python 
script. Perhaps the only difficulty in adopting this approach was 
learning to use Babel arrays within Fortran in order to pass them 
to the component layer on the client side. Arrays must be passed 
back and forth to client and server in a language independent 
fashion and this is accomplished by requiring the creation of 
Babel arrays in all user code. 

5. Discussion 
Several different approaches are available today to build language 
independent components that can be re-used in multiple 

applications, used to assemble complex multi-physics simulators 
from pre-built software, and run simulation codes from a scripting 
language such as Python. Babel is a tool that offers certain unique 
features if those features are required, including a powerful array 
syntax, support for complex numbers, and parallel computing. 
The price for this capability is a need for careful attention to 
compiler options for all codes that must interoperate and the need 
to learn Babel data structures and the Babel scientific interface 
definition language. If Babel’s unique features are required, then 
this is a price that has to be paid, for there are few other options at 
this time that provide all these features. 
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